2017 Mathematics Paper 1 (Non-calculator)

N5

Finalised Marking Instructions

© Scottish Qualifications Authority 2017

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments. This publication must not be reproduced for commercial or trade purposes.

General marking principles for National 5 Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.

For each question the marking instructions are generally in two sections, namely Illustrative Scheme and Generic Scheme. The illustrative scheme covers methods which are commonly seen throughout the marking. The generic scheme indicates the rationale for which each mark is awarded. In general, markers should use the illustrative scheme and only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the detailed marking instructions for this assessment.
(b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
(c) If a specific candidate response does not seem to be covered by either the principles or detailed marking instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader.
(d) Credit must be assigned in accordance with the specific assessment guidelines.
(e) One mark is available for each • There are no half marks.
(f) Working subsequent to an error must be followed through, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.
(g) As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.
(h) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
(i) As a consequence of an error perceived to be trivial, casual or insignificant, eg $6 \times 6=12$ candidates lose the opportunity of gaining a mark. However, note the second example in comment (\mathbf{j}).
(j) Where a transcription error (paper to script or within script) occurs, the candidate should normally lose the opportunity to be awarded the next process mark, eg

(k) Horizontal/vertical marking

Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Example:

$$
\begin{array}{ccc}
& \bullet^{5} & \bullet 6 \\
.5 & x=2 & x=-4 \\
.6 & y=5 & y=-7
\end{array}
$$

Horizontal: ${ }^{5} x=2$ and $x=-4 \quad$ Vertical: ${ }^{5} x=2$ and $y=5$

$$
{ }^{\bullet} y=5 \text { and } y=-7 \quad \cdot 6 x=-4 \text { and } y=-7
$$

Markers should choose whichever method benefits the candidate, but not a combination of both.
(l) In final answers, unless specifically mentioned in the detailed marking instructions, numerical values should be simplified as far as possible, eg:

$$
\begin{array}{ll}
\frac{15}{12} \text { must be simplified to } \frac{5}{4} \text { or } 1 \frac{1}{4} & \frac{43}{1} \text { must be simplified to } 43 \\
\frac{15}{0 \cdot 3} \text { must be simplified to } 50 & \frac{4 / 5}{3} \text { must be simplified to } \frac{4}{15} \\
\sqrt{64} \text { must be simplified to } 8^{*} &
\end{array}
$$

*The square root of perfect squares up to and including 100 must be known.
(m) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
(n) Unless specifically mentioned in the marking instructions, the following should not be penalised:

- Working subsequent to a correct answer
- Correct working in the wrong part of a question
- Legitimate variations in numerical answers/algebraic expressions, eg angles in degrees rounded to nearest degree
- Omission of units
- Bad form (bad form only becomes bad form if subsequent working is correct), eg $\left(x^{3}+2 x^{2}+3 x+2\right)(2 x+1)$ written as $\left(x^{3}+2 x^{2}+3 x+2\right) \times 2 x+1$
$2 x^{4}+4 x^{3}+6 x^{2}+4 x+x^{3}+2 x^{2}+3 x+2$ written as $2 x^{4}+5 x^{3}+8 x^{2}+7 x+2$ gains full credit
- Repeated error within a question, but not between questions or papers
(o) In any 'Show that...' question, where the candidate has to arrive at a required result, the last mark of that part is not available as a follow-through from a previous error unless specified in the detailed marking instructions.
(p) All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.
(q) Scored-out working which has not been replaced should be marked where still legible. However, if the scored out working has been replaced, only the work which has not been scored out should be marked.
(r) Where a candidate has made multiple attempts using the same strategy and not identified their final answer, mark all attempts and award the lowest mark. Where a candidate has tried different valid strategies, apply the above ruling to attempts within each strategy and then award the highest resultant mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Detailed marking instructions for each question.

Notes:

1. Correct answer without working award $0 / 2$
2. Accept $-5^{2}+3 \times-5$ for • ${ }^{1}$
3. For subsequent incorrect working, \bullet^{2} is not available

Commonly Observed Responses:

1. (a) For $-5=(-5)^{2}+3 \times(-5) \rightarrow-5=10$
award 2/2
(b) For $-5=(-5)^{2}+3 \times(-5) \rightarrow-5=10 \rightarrow x=15$
2. For $5^{2}+3 \times 5=40$
award $1 / 2 \checkmark x$
3. For $5^{2}+3 \times(-5)=10$
award 0/2
award 0/2

Commonly Observed Responses:

1. For $\frac{267-198}{2}=34 \cdot 5$
award 0/2

Question		Generic scheme	Illustrative scheme	Max mark
3.		Ans: $\frac{22}{9}$ - ${ }^{1}$ start simplification and know how to divide fractions - ${ }^{2}$ consistent answer	$\begin{aligned} & \cdot \frac{11}{6} \times \frac{4}{3} \\ & -2 \frac{22}{9} \text { or } 2 \frac{4}{9} \end{aligned}$	2

Notes:

1. Correct answer without working
2. Do not penalise incorrect conversion of $\frac{22}{9}$ to a mixed number

Commonly Observed Responses:

1. $\frac{11}{6} \times \frac{4}{3}=\frac{44}{18}$
award $1 / 2 \checkmark x$
2. $\frac{11}{6} \times \frac{3}{4}=\frac{11}{8}$
3. $\frac{6}{11} \times \frac{3}{4}=\frac{9}{22}$
award $1 / 2 \times \checkmark$

Question		Generic scheme	Illustrative scheme	Max mark
4.		Ans: $\quad 2 x^{3}-5 x^{2}-10 x+3$ - ${ }^{1}$ start to expand - ${ }^{2}$ complete expansion $\bullet{ }^{3}$ collect like terms which must include a term in x^{3} and a negative coefficient	- ${ }^{1}$ evidence of any 3 correct terms eg $2 x^{3}-8 x^{2}+2 x$ - $2 x^{3}-8 x^{2}+2 x+3 x^{2}-12 x+3$ - ${ }^{3} 2 x^{3}-5 x^{2}-10 x+3$	3

Notes:

1. Correct answer with no working
2. For subsequent incorrect working, the final mark is not available

Commonly Observed Responses:

1. For eg $2 x^{3}-8 x^{2}+2 x+3 x^{2}+12 x+3=2 x^{3}-5 x^{2}+14 x+3$ award $2 / 3 \checkmark \times \checkmark$
2. For eg $2 x^{3}+2 x-12 x+3=2 x^{3}-10 x+3$ award 2/3 $\checkmark \times \checkmark$
3. For $2 x^{3}+8 x^{2}+2 x+3 x^{2}+12 x+3=2 x^{3}+11 x^{2}+14 x+3$ award 1/3 $\checkmark \times x$

	Generic scheme	Illustrative scheme	Max mark
5.	Ans: $B(0,6,6), C(3,3,9)$ - ${ }^{1}$ Coordinate B - ${ }^{2}$ Coordinate C	$\begin{aligned} & \bullet^{1}(0,6,6) \\ & \bullet^{2}(3,3,9) \end{aligned}$	2

Notes:

1. The maximum mark available is $1 / 2$ where
(a) brackets are omitted
(b) answers are given in component form
2. For $(6,6,0)$ and $(9,3,3)$ [repeated error]
award $1 / 2 \times \checkmark$

Commonly Observed Responses:

1. For $0,6,6$ and $3,3,9$
award 1/2 $\times \checkmark$
2. For $\left(\begin{array}{l}0 \\ 6 \\ 6\end{array}\right)$ and $\left(\begin{array}{l}3 \\ 3 \\ 9\end{array}\right)$
award 1/2
3. For eg $\left(\begin{array}{l}0 \\ 6 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}3 \\ 3 \\ 9\end{array}\right)$
award 0/2

	Question	Generic scheme	Illustrative scheme	Max mark
6.		Ans: $y=-2 x+4$ Method 1: $y-b=m(x-a)$ - ${ }^{1}$ find gradient ${ }^{2}$ 2 substitute gradient and a point into $y-b=m(x-a)$ ${ }^{3}$ state equation in simplest form Method 2: $y=m x+c$ - ${ }^{1}$ find gradient -2 substitute gradient and a point into $y=m x+c$ ${ }^{3}{ }^{3}$ state equation in simplest form	- $1-\frac{8}{4}$ or equivalent - 2 eg $y-(-2)=-\frac{8}{4}(x-3)$ - $3 y=-2 x+4$ or equivalent -1 $-\frac{8}{4}$ - 2 eg $-2=-\frac{8}{4} \times 3+c$ -3 $y=-2 x+4$ or equivalent	3
Notes: 1. Correct answer without working award 3/3 2. BEWARE \bullet^{1} is not available for $\frac{-2-6}{3-(-1)}=\frac{8}{-4}$ or $\frac{6-(-2)}{-1-3}=\frac{-8}{4}$				
Commonly Observed Responses: 1. For a final answer of $y=-\frac{2}{1} x+4$ award 2/3 $\checkmark \checkmark x$ 2. $y=2 x+8 \quad\left[m=\frac{8}{4}(-1,6)\right]$ award 2/3 $\times \checkmark \checkmark$ 3. $y=2 x-8 \quad\left[m=\frac{8}{4}(3,-2)\right]$ award 2/3 $\times \checkmark \checkmark$ 4. $m=\frac{4}{4}=1 \rightarrow y-6=1(x-(-1)) \rightarrow y=1 x+7$ award 2/3 $\times \checkmark \checkmark$				

Commonly Observed Responses:

1. For $\frac{1}{2} \times 12 \times 8 \times \sin \frac{2}{3}=32$
award 1/2
2. For $\frac{1}{2} \times 12 \times 8 \times \sin \frac{2}{3}$
3. For $\frac{1}{2} \times 12 \times 8=48$
award 0/2
4. For (a) $\frac{1}{2} \times 12 \times 8 \times 0 . \dot{6}=32$ or $\frac{1}{2} \times 12 \times 8 \times 0.666 \ldots=32$
award 0/2
(b) $\frac{1}{2} \times 12 \times 8 \times 0.67=32.16$ or $\frac{1}{2} \times 12 \times 8 \times 0.66=31.68$
award 2/2
(c) $\frac{1}{2} \times 12 \times 8 \times 0.7=33.6$ or $\frac{1}{2} \times 12 \times 8 \times 0.6=28.8$
award $1 / 2 \times \checkmark$
award 0/2

| 8. | Ans: $x<5$
 $\bullet{ }^{1}$ expand bracket
 $\bullet \bullet^{2}$ collect like terms
 $\bullet 3$ solve for x | $\bullet 13 x-6$
 $\bullet 2$ | |
| :--- | :--- | :--- | :--- | :---: |

Notes:

1. Correct answer without valid working
award 0/3
Treat guess and check as invalid working

Commonly Observed Responses

1. For $19+x>15+3 x-6 \rightarrow 2 x>-10 \rightarrow x>-5$
2. For $19+x>15+3 x-2 \rightarrow-2 x>-6 \rightarrow x<3$
3. For $19+x>18(x-2) \rightarrow 19+x>18 x-36 \rightarrow 55>17 x \rightarrow \frac{55}{17}>x$
4. For (a) $19+x=15+3 x-6 \rightarrow-2 x=-10 \rightarrow x=5 \rightarrow x<5$
(b) $19+x=15+3 x-6 \rightarrow-2 x=-10 \rightarrow x=5$
award 1/3 $\checkmark x x$
award 2/3 $\quad \times \checkmark \checkmark$
award $2 / 3 \times \checkmark \checkmark$
award $3 / 3$
award 2/3 $\checkmark \checkmark x$

	Question	Generic scheme	Illustrative scheme	Max mark
9.	9.	Ans: 26° Method 1 - ${ }^{1}$ calculate size of angle OBD - ${ }^{2}$ calculate size of angle ODB (ODB = OBD) - ${ }^{3}$ calculate size of angle CAB Method 2 - ${ }^{1}$ calculate size of angle $A B C$ - ${ }^{2}$ calculate size of angle OCB ($O C B=90-A B C$) - ${ }^{3}$ calculate the size of angle CAB	- ${ }^{1} \mathrm{OBD}=32$ - ${ }^{2}$ ODB $=32$ - ${ }^{3} \mathrm{CAB}=26$ - ${ }^{1} \mathrm{ABC}=32$ - ${ }^{2}$ OCB $=58$ - ${ }^{3} \mathrm{CAB}=26$	3
Notes: 1. Check both methods and award the higher mark. 2. Full marks may be awarded for information marked on the diagram. 3. Where information is not marked on the diagram then working must clearly attach calculations to named angles. 4. For an answer of 26° with no relevant working award 0/3 5. Where candidate uses triangle $A B O, \bullet^{3}$ is available for $A B O=90$ and answer to $C A B=90-A O B$ eg $O B D=32 ; \quad A O B=32 ; \quad A B O=90$ and $C A B=58$				
Commonly Observed Responses:				

Notes:

1. Correct answer without working $3 / 3$

Commonly Observed Responses:

1. For $b=\frac{c \times f-t^{2}}{4}$
award 3/3
2. For $b=\frac{t^{2}-F c}{-4}$
award 3/3
3. For $b=\frac{F c}{4}-\frac{t^{2}}{4}$
award 3/3

	Generic scheme	Illustrative scheme	Max mark
11.	Ans: $\frac{3-2 a}{a^{2}}$ - ${ }^{1}$ valid common denominator - ${ }^{2}$ answer in simplest form	$\begin{aligned} & \bullet^{1} \frac{-}{a^{2}} \text { or } \overline{a^{3}} \text { or } \overline{a^{2} \times a} \\ & \bullet^{2} \frac{3-2 a}{a^{2}} \end{aligned}$	2

Notes:

1. Correct answer without working
2. For subsequent incorrect working, the final mark is not available

$$
\text { eg } \quad \frac{3-2 d}{a^{2}}=\frac{3-2}{a}=\frac{1}{a}
$$

award $1 / 2 \checkmark x$
3. For $\frac{3}{a^{2}}-\frac{2}{a}=\frac{1}{a}$

Commonly Observed Responses:

1. For $\frac{3 a-2 a^{2}}{a \times a^{2}}$ award $1 / 2 \checkmark x$
2. For $\frac{3}{a^{2}}-\frac{2 a}{a^{2}}$

Question		Generic scheme	Illustrative scheme	Max mark
14	(a)	Ans: $\quad a=5$ - ${ }^{1}$ state value of a	-1 5	1
Notes: 1. Evidence may appear on the graph 2. Accept ... $(x+5)^{2} \ldots .$. 3. Where no answer appears in (a), check (b) for evidence of $a=5$ eg $8=(-3+5)^{2}+b$				
Commonly Observed Responses:				
	(b)	Ans: $\quad b=4$ - ${ }^{1}$ substitute $(-3,8)$ into equation - ${ }^{2}$ state value of b	-1 $8=(-3+5)^{2}+b$ $\bullet^{2} 4$	2
Notes: 1. Correct answer without working 1. Evidence may appear on the graph 2. An incorrect answer in (a) must be followed through (working must be shown) with the possibility of awarding 2/2.				
Commonly Observed Responses: 1. For (a) $a=3$ and (b) $b=8$ with or without working award (a) 0/1 and (b) $0 / 2$				

2017 Mathematics Paper 2

National 5

Finalised Marking Instructions

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments. This publication must not be reproduced for commercial or trade purposes.

General marking principles for National 5 Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.

For each question the marking instructions are generally in two sections, namely Illustrative Scheme and Generic Scheme. The illustrative scheme covers methods which are commonly seen throughout the marking. The generic scheme indicates the rationale for which each mark is awarded. In general, markers should use the illustrative scheme and only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the detailed marking instructions for this assessment.
(b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
(c) If a specific candidate response does not seem to be covered by either the principles or detailed marking instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader.
(d) Credit must be assigned in accordance with the specific assessment guidelines.
(e) One mark is available for each • There are no half marks.
(f) Working subsequent to an error must be followed through, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.
(g) As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.
(h) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
(i) As a consequence of an error perceived to be trivial, casual or insignificant, eg $6 \times 6=12$ candidates lose the opportunity of gaining a mark. However, note the second example in comment (\mathbf{j}).
(j) Where a transcription error (paper to script or within script) occurs, the candidate should normally lose the opportunity to be awarded the next process mark, eg

(k) Horizontal/vertical marking

Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Example:

$$
\begin{array}{ccc}
& \bullet^{5} & \bullet 6 \\
.5 & x=2 & x=-4 \\
.6 & y=5 & y=-7
\end{array}
$$

Horizontal: ${ }^{\bullet 5} x=2$ and $x=-4 \quad$ Vertical: ${ }^{\bullet 5} x=2$ and $y=5$

$$
\cdot 6 y=5 \text { and } y=-7 \quad \cdot 6 x=-4 \text { and } y=-7
$$

Markers should choose whichever method benefits the candidate, but not a combination of both.
(l) In final answers, unless specifically mentioned in the detailed marking instructions, numerical values should be simplified as far as possible, eg:
$\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1 \frac{1}{4} \quad \frac{43}{1}$ must be simplified to 43
$\frac{15}{0 \cdot 3}$ must be simplified to $50 \quad \frac{4 / 5}{3}$ must be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8^{*}
*The square root of perfect squares up to and including 100 must be known.
(m) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
(n) Unless specifically mentioned in the marking instructions, the following should not be penalised:

- Working subsequent to a correct answer
- Correct working in the wrong part of a question
- Legitimate variations in numerical answers/algebraic expressions, eg angles in degrees rounded to nearest degree
- Omission of units
- Bad form (bad form only becomes bad form if subsequent working is correct), eg $\left(x^{3}+2 x^{2}+3 x+2\right)(2 x+1)$ written as $\left(x^{3}+2 x^{2}+3 x+2\right) \times 2 x+1$
$2 x^{4}+4 x^{3}+6 x^{2}+4 x+x^{3}+2 x^{2}+3 x+2$ written as $2 x^{4}+5 x^{3}+8 x^{2}+7 x+2$ gains full credit
- Repeated error within a question, but not between questions or papers
(o) In any 'Show that...' question, where the candidate has to arrive at a required result, the last mark of that part is not available as a follow-through from a previous error unless specified in the detailed marking instructions.
(p) All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.
(q) Scored-out working which has not been replaced should be marked where still legible. However, if the scored out working has been replaced, only the work which has not been scored out should be marked.
(r) Where a candidate has made multiple attempts using the same strategy and not identified their final answer, mark all attempts and award the lowest mark. Where a candidate has tried different valid strategies, apply the above ruling to attempts within each strategy and then award the highest resultant mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Detailed marking instructions for each question

	Generic scheme	Illustrative scheme	Max mark
1.	Ans: 23 - ${ }^{1}$ start process - ${ }^{2}$ solution	- ${ }^{1} 18^{2}+(-14)^{2}+3^{2}$ -2 23	2

Notes:

1. Correct answer without working
award 2/2

Commonly Observed Responses:

No working necessary:

1. $\sqrt{529}$
2. $11 \cdot 7 \ldots(\operatorname{eg} \sqrt{324-196+9}=\sqrt{137})$
award $1 / 2 \checkmark x$
3. $\sqrt{137}$
award 0/2
4. $2 \cdot 6 \ldots(\mathrm{eg} \sqrt{18-14+3}=\sqrt{7})$ award 0/2

Notes:

1. Correct answer without working
award 3/3
2. Where an incorrect percentage is used, the working must be followed through to give the possibility of awarding $2 / 3$,
eg for $1200 \times 1.45^{3}=3658$, with working
3. Where division is used,
(a) along with $1.045,{ }^{1}$ is not available
eg $1200 \div 1 \cdot 045^{3}=1052$
(b) along with an incorrect percentage, \bullet^{1} and \bullet^{2} are not available
eg $1200 \div 0.955^{3}=1378$
award $1 / 3 \times x \checkmark$

Commonly Observed Responses:

1. No working necessary:
(a) 1369.00
award $3 / 3$
(b) 1370 or $1369 \cdot 40$ or $1369 \cdot 4$
award 2/3 $\checkmark \checkmark x$
2. Working must be shown:
(a) $1200 \times 0.955^{3}=1045$
(b) $1200 \times 0 \cdot 045=54 \rightarrow 1200+3 \times 54=1362$
(c) $1200 \times 1.045=1254$
(d) $1200 \times 1.045 \times 3=3762$
(e) $1200 \times 0.045 \times 3=162$
award 2/3 $\times \checkmark \checkmark$
award 1/3 $\checkmark x x$
award 1/3 $\checkmark \times x$
award 1/3 $\checkmark \times x$
award 0/3

Notes:

1. Correct answer without working
2. Accept 412 metres with working
3. Where sine rule is used
4. Disregard errors due to premature rounding provided there is evidence
(a) $180^{2}+250^{2}-2 \times 180 \times 250 \times(-0 \cdot 84)=170500 \rightarrow 412 \cdot 9 \ldots$
(b) $180^{2}+250^{2}-2 \times 180 \times 250 \times(-0 \cdot 8)=166900 \rightarrow 408 \cdot 5 \ldots$
5. (a) 407 or 408 (RAD)
(b) 394 (GRAD)
award 0/3
award 3/3
award 0/3
award 3/3
award 3/3
award 2/3 $\checkmark \times \checkmark$
award 2/3 $\checkmark \times \checkmark$

Inappropriate use of RAD or GRAD should only be penalised once in either Q3, 10 or 15.

Commonly Observed Responses:

Working must be shown:

1. $\sqrt{180^{2}+250^{2}}=308(\cdot 05 \ldots)$
award $1 / 3 \times \times \checkmark$
2. (a) $180^{2}+250^{2}-2 \times 180 \times 250 \times \cos 147=170380 \cdot 0 \ldots \rightarrow 410$
award 3/3
(b) $180^{2}+250^{2}-2 \times 180 \times 250 \times \cos 147 \rightarrow 410$
award 2/3 $\checkmark \times \checkmark$
3. $32400+62500-75480 \cdot 35 \ldots=19419 \cdot 64 \ldots \rightarrow 139(\cdot 35 \ldots)$ award 2/3 $\checkmark \times \checkmark$

Notes:

1. Correct answer without working
2. The final mark is only available if $b^{2}-4 a c>0$; see CORs 2-5
3. The final mark is only available when answer requires rounding

Commonly Observed Responses:

1. $57\left(b^{2}-4 a c\right)$
award $1 / 3 \times \checkmark x$
2. $\frac{-5 \pm \sqrt{5^{2}-4 \times 2 \times(-4)}}{2 \times 2} \rightarrow \frac{-5 \pm \sqrt{-7}}{2 \times 2} \rightarrow-1 \cdot 9,-0.6$
award $1 / 3 \checkmark \times x$
(Beware: candidate may get $\sqrt{-7}$ then change it to $\sqrt{7}$)
3. $\frac{-5 \pm \sqrt{5^{2}-4 \times 2 \times(-4)}}{2 \times 2} \rightarrow \frac{-5 \pm \sqrt{7}}{2 \times 2} \rightarrow-1 \cdot 9,-0.6$ award $2 / 3 \checkmark \times \checkmark$
4. $\frac{-5 \pm \sqrt{5^{2}-4 \times 2 \times 4}}{2 \times 2} \rightarrow \frac{-5 \pm \sqrt{-7}}{2 \times 2} \rightarrow-1 \cdot 9,-0.6$ award $1 / 3 \times \checkmark x$ (Beware: candidate may get $\sqrt{-7}$ then change it to $\sqrt{7}$)
5. $\frac{-5 \pm \sqrt{5^{2}-4 \times 2 \times 4}}{2 \times 2} \rightarrow \frac{-5 \pm \sqrt{7}}{2 \times 2} \rightarrow-1 \cdot 9,-0 \cdot 6$
award 1/3 $\times \times \checkmark$

	Question	Generic scheme	Illustrative scheme	Max mark
5		Ans: 4200 - ${ }^{1}$ know that $115 \%=4830$ - ${ }^{2}$ begin valid strategy - ${ }^{3}$ complete calculation within valid strategy	- ${ }^{1} 115 \%=4830$ -2 $1 \%=\frac{4830}{115}$ or equivalent - ${ }^{3} 4200$	3
	Notes: For 4200 For 4105 (i) and (ii) ot	ith or without working 4106 (85% of 4830) or 5554 or evidence of ${ }^{1}$ rwise	award 3 115% of 4830) award 1 award 0	
	Commonly $\frac{4830}{1 \cdot 15}=42$	served Responses:	award 3/3	
	$\begin{aligned} & 85 \%=483 \\ & 15 \%=483 \end{aligned}$	$\rightarrow 5682$ $\rightarrow 32200$	award 2 award 2	

Notes:

1. Correct answer without working
2. Accept variations in π
eg $\frac{4}{3} \times 3 \cdot 14 \times 12^{3}-\frac{4}{3} \times 3 \cdot 14 \times 9^{3}=4182 \cdot 48=4180 \mathrm{~mm}^{3}$
3. In awarding ${ }^{5}$
(a) Intermediate calculations need not be shown

$$
\text { eg } \frac{4}{3} \times \pi \times 12^{3}-\frac{4}{3} \times \pi \times 9^{3}=4180 \mathrm{~mm}^{3}
$$

award 5/5
(b) Where intermediate calculations are shown, they must involve at least four significant figures
eg 7238.229... $-3053 \cdot 628 \ldots=7240-3050=4190 \mathrm{~mm}^{3} \quad$ award $4 / 5 \checkmark \checkmark \checkmark \checkmark x$
4. Volume of second sphere may be calculated using volume scale factor
eg accept $\left(\frac{3}{4}\right)^{3} \times \frac{4}{3} \times \pi \times 12^{3}$ for the award of \bullet^{3}

Question	Generic scheme	Illustrative scheme	Max mark

Commonly Observed Responses:

Working must be shown:

1. (a) $\frac{4}{3} \times \pi \times 12^{3}-\frac{4}{3} \times \pi \times 10 \cdot 5^{3}=(7238 \cdot \ldots-4849 \cdot \ldots)=2390 \mathrm{~mm}^{3}$
award 4/5 $\checkmark \checkmark \times \checkmark \checkmark$
(b) $\frac{4}{3} \times \pi \times 12^{3}-\frac{4}{3} \times \pi \times 10 \cdot 5^{3}=7240-4850=2390 \mathrm{~mm}^{3}$
award $3 / 5 \checkmark \checkmark \times \checkmark \times$
2. $\frac{4}{3} \times \pi \times 12^{3}-\frac{4}{3} \times \pi \times 3^{3}=7130 \mathrm{~mm}^{3}$ award 4/5 $\checkmark \checkmark \times \checkmark \checkmark$
3. $\frac{4}{3} \times \pi \times 12^{3}=7240 \mathrm{~mm}^{3}$
award $2 / 5 \times \checkmark \times \times \checkmark$
4. $\frac{4}{3} \times \pi \times 12^{3}+\frac{4}{3} \times \pi \times 9^{3}=10300 \mathrm{~mm}^{3}$
award 4/5 $\times \checkmark \checkmark \checkmark \checkmark$
5. $\frac{4}{3} \times \pi \times 24^{3}-\frac{4}{3} \times \pi \times 18^{3}=33500 \mathrm{~mm}^{3}$
award 4/5 $\checkmark \times \checkmark \checkmark \checkmark$
6. $\frac{4}{3} \times \pi \times 24^{3}-\frac{4}{3} \times \pi \times 21^{3}=19100 \mathrm{~mm}^{3}$
award 3/5 $\checkmark \times \times \checkmark \checkmark$
7. $\frac{4}{3} \times \pi \times 1 \cdot 5^{3}=14 \cdot 1 \mathrm{~mm}^{3}$
award $1 / 5 \times \times \times \times \checkmark$
8. $\frac{4}{3} \times \pi \times 12^{2}-\frac{4}{3} \times \pi \times 9^{2}=264 \mathrm{~mm}^{3}$
award 4/5 $\checkmark \times \checkmark \checkmark \checkmark$
9. $\frac{4}{3} \times \pi \times 12^{3}-\frac{4}{3} \times \pi \times 9^{3}=1332 \pi \mathrm{~mm}^{3}$ award 4/5 $\checkmark \checkmark \checkmark \checkmark x$

Question	Generic scheme	Illustrative scheme	Max mark
Notes:			
1. In Meth carried $\text { eg } 8^{2}+$ $8^{2}+19^{2}$ 2. Where applica	ot available when $\begin{aligned} & 61, \quad 22^{2}=484 ; \\ & =425, \quad 22^{2}=484 ; \end{aligned}$ riangle is chosen, agoras or cosine r	have not been e for consistent and 3	

Commonly Observed Responses:

1. $8^{2}+19^{2}=64+361=425,22^{2}=484 ; 8^{2}+19^{2}<22^{2}$; No
2. $7^{2}+16^{2}=305,19^{2}=361 ; 7^{2}+16^{2} \neq 19^{2}$; No
3. $7^{2}+19^{2}=410,16^{2}=256 ; 7^{2}+19^{2} \neq 16^{2}$; No
4. $8^{2}+22^{2}=548,19^{2}=361 ; 8^{2}+22^{2} \neq 19^{2}$; No
5. (a) $8^{2}+19^{2}=425,22^{2}=484$; The square of the hypotenuse is not equal to the sum of the squares of the other two sides; No
(b) $8^{2}+19^{2}=425,22^{2}=484$; The hypotenuse is not equal to the sum of the squares of the other two sides; No
award 3/3
award $2 / 3 \times \checkmark \checkmark$
award $1 / 3 \times x \checkmark$
award $2 / 3 \times \checkmark \checkmark$
award 3/3
award $2 / 3 \checkmark \checkmark x$

Question		Generic scheme	Illustrative scheme	Max mark
8.	(a)	Ans: d-c - ${ }^{1}$ answer	- ${ }^{1} \mathbf{d - c}$ or equivalent	1
Notes: 1. Accept -c $+\mathbf{d}$ or $\mathbf{d + - c}$ 2. Accept D-C as bad form				
Commonly Observed Responses:				
	(b)	Ans: $\frac{3}{2} \mathbf{d}-\frac{1}{2} \mathbf{c}$ - ${ }^{1}$ valid pathway - ${ }^{2}$ correct simplified expression	- ${ }^{1} \overrightarrow{\mathbf{T P}}+\frac{1}{2} \overrightarrow{\mathbf{P R}}$ or $\overrightarrow{\mathbf{T Q}}+\overrightarrow{\mathbf{Q R}}+\frac{1}{2} \overrightarrow{\mathbf{R P}}$ - $2 \frac{3}{2} \mathbf{d}-\frac{1}{2} \mathbf{c}$ or equivalent	2

Notes:

1. Correct answer without working
award 2/2
2. Accept $\frac{3}{2} \mathbf{D}-\frac{1}{2} \mathbf{C}$
3. $\overrightarrow{\mathbf{T P}}+\overrightarrow{\mathbf{P V}}$ or $\overrightarrow{\mathbf{T Q}}+\overrightarrow{\mathbf{Q R}}+\overrightarrow{\mathbf{R V}}$ alone is not enough for the award of $\bullet{ }^{1}$
4. For the award of \bullet^{1}
(a) accept $\mathbf{d}+\frac{1}{2} \overrightarrow{\mathbf{P R}}$ but not $\mathbf{d}+\overrightarrow{\mathbf{P V}}$
(b) accept $2 \mathbf{d}-\mathbf{c}+\frac{1}{2} \overrightarrow{\mathbf{R P}}$ but not $2 \mathbf{d}-\mathbf{c}+\overrightarrow{\mathbf{R V}}$
(c) accept $\overrightarrow{\mathbf{P V}}=\frac{1}{2}(\mathbf{d}-\mathbf{c})$ but not $\frac{1}{2}(\mathbf{d}-\mathbf{c})$ alone
(d) accept $\overrightarrow{\mathbf{R V}}=\frac{1}{2}(\mathbf{c}-\mathbf{d})$ but not $\frac{1}{2}(\mathbf{c}-\mathbf{d})$ alone

Commonly Observed Responses:

1. $\frac{1}{2}(3 \mathbf{d}-\mathbf{c})$

Question		Generic scheme	Illustrative scheme	Max mark
9.	(a)	Ans: $(2 x-5)(2 x+5)$ - ${ }^{1}$ factorise	-1 $(2 x-5)(2 x+5)$	1
Notes:				
Commonly Observed Responses:				
	(b)	Ans: $\frac{2 x+5}{x+2}$ - ${ }^{1}$ start to factorise - ${ }^{2}$ complete factorising - ${ }^{3}$ simplify	${ }^{1}{ }^{1}\left(\begin{array}{ll}2 x & 5\end{array}\right)(x 2)$ - $2(2 x-5)(x+2)$ - $\frac{2 x+5}{x+2}$	3
Notes: 1. Correct answer without working award 3/3 2. For $(2 x 10)\left(\begin{array}{ll}x & 1\end{array}\right)$ or $(2 x 2)\left(\begin{array}{ll}x & 5\end{array}\right)$ etc award $1 / 3 \checkmark x x$ 3. For subsequent incorrect working, the final mark is not available eg $\frac{2 x+5}{x+2}=\frac{7}{3}$ award $2 / 3 \checkmark \checkmark x$ 4. \bullet^{3} is only available when both the numerator and denominator have at least two factors				
Commonly Observed Responses:				

Question		Generic scheme	Illustrative scheme	Max mark
10.		Ans: 9.9 kilometres - ${ }^{1}$ calculate size of angles DEF and DFE - ${ }^{2}$ correct substitution into sine rule - ${ }^{3}$ rearrange formula - ${ }^{4}$ calculate DF	-1 40 and 104 -2 $\frac{\mathrm{DF}}{\sin 40}=\frac{15}{\sin 104}$ - $3 \frac{15 \times \sin 40}{\sin 104}$ -4 9.9(36...)	4

Notes:

1. Correct answer without working
2. Accept a final answer of 10 , with working
award 0/4
award 4/4
3. •1 may be awarded for sizes of angles DEF and DFE marked on the diagram
4. Where incorrect sizes are used for angles DEF and DFE
(a) with prior evidence of angle sizes (marked on diagram or clearly attached to named angles), marks \bullet^{2}, \bullet^{3} and \bullet^{4} are available
(b) without prior evidence of angle sizes, only marks \bullet^{3} and $\bullet{ }^{4}$ are available
5. BEWARE $\frac{\mathrm{DF}}{\sin 40}=\frac{15}{\sin 76} \rightarrow 9.9$
(a) with prior evidence of DEF $=40$ and DFE $=76$
award 3/4 $\times \checkmark \checkmark \checkmark$
(b) without prior evidence of sizes of angles DEF and DFE award 2/4 $\times \times \checkmark \checkmark$
6. Disregard errors due to premature rounding provided there is evidence
7. Inappropriate use of RAD or GRAD should only be penalised once in either Q3, 10 or 15
(a) -34.7... (RAD)
(b) $8 \cdot 8 \ldots$ (GRAD)

Commonly Observed Responses:

1. $\frac{\mathrm{DF}}{\sin 36}=\frac{15}{\sin 90} \rightarrow 8 \cdot 8$
(a) with prior evidence of sizes of angles DEF and DFE marks
(b) without prior evidence of sizes of angles DEF and DFE
2. $\frac{\mathrm{DF}}{\sin 230}=\frac{15}{\sin 126} \rightarrow-14 \cdot 2$
3. $\frac{D F}{40}=\frac{15}{104} \rightarrow 5 \cdot 769 \ldots \ldots .$.
award 1/4 $\checkmark \times x \times$

Question		Generic scheme	Illustrative scheme	Max mark
11.		Ans: $\frac{3}{5}$ or 0.6 - ${ }^{1}$ isolate term in y or divide throughout by 5 \bullet^{2} state gradient explicitly	- ${ }^{1}-5 y=-3 x \ldots$ or $3 x \ldots=5 y$ or or $\frac{3 x}{5}-\frac{5 y}{5}-\frac{10}{5}=0$ - $2 \frac{3}{5}$ or 0.6	2

Notes:

1. Correct answer without working award 2/2
2. Do not accept $x=\frac{3}{5}$ or $y=\frac{3}{5}$ for the award of \bullet^{2}
3. Where gradient formula is used with two points which
(a) lie on the line $3 x-5 y+10=0$, award ${ }^{1}$ for correct substitution into gradient formula award \bullet^{2} for correct calculation of gradient
(b) do not lie on the line $3 x-5 y+10=0$, award $0 / 2$

Commonly Observed Responses:

1. $\frac{3}{5} x$ or $0.6 x$ (with working) award $1 / 2 \checkmark x$

Question		Generic scheme	Illustrative scheme	Max mark
12.		Ans: $x^{-\frac{1}{3}}$		

Notes:

1. Correct answer without working award 0/4
2. The final mark is for doubling the result of a Pythagoras (or trig.) calculation and then adding 28
3. In the absence of a diagram accept $x^{2}=14^{2}-12^{2}$ as evidence for the award of \bullet^{1} and \bullet^{2}

4. BEWARE

Where a diagram is shown, working must be consistent with the diagram.
.2 is not available for an incorrect diagram leading to $x^{2}=14^{2}-12^{2}$
5. Disregard errors due to premature rounding provided there is evidence

Commonly Observed Responses:

1. For $x^{2}=14^{2}+12^{2} \rightarrow x=18.4$ height $=64.8 \ldots$ or 64.9
(a) working inconsistent with correct diagram
(b) working consistent with candidate's diagram (cosine rule may be used to calculate x)
(c) no diagram
2. For $x^{2}=24^{2}-14^{2} \rightarrow x=19 \cdot 4 \ldots$ height $=66 \cdot 9 \ldots$ or 67
(a) working consistent with candidate's diagram
(b) no diagram or working not consistent with candidate's diagram
3. For $x^{2}=24^{2}+14^{2} \rightarrow x=27 \cdot 8 \ldots$ height $=83 \cdot 5 \ldots$ or $83 \cdot 6$
(a) working consistent with candidate's diagram (cosine rule may be used to calculate x)
(b) no diagram or working not consistent with candidate's diagram
award 3/4 $\checkmark \times \checkmark \checkmark$
award 3/4 $\times \checkmark \checkmark \checkmark$
award 2/4 $\times x \checkmark \checkmark$
award 3/4 $\times \checkmark \checkmark \checkmark$
award 2/4 $\times \times \checkmark \checkmark$

Notes:

1. Correct answer without working award 0/3
2. Accept variations in π
3. Premature rounding of $\frac{31.5}{\pi \times 12.8}$ must be to at least 2 decimal places
4. For the award of \bullet^{3}, the calculation must involve a division by a product.

The calculation must include $31 \cdot 5, \pi, 360$ and the candidate's chosen diameter or radius
5. For subsequent incorrect working, the final mark is not available
eg $360-282=78$
award $2 / 3 \checkmark \checkmark x$

Commonly Observed Responses:

1. For $\frac{31.5 \times 360}{\pi \times 6.4}=564$
award 2/3
2. For $\frac{31 \cdot 5 \times 360}{\pi \times 6 \cdot 4^{2}}=88 \cdot 1 \ldots$
award 2/3
3. For $\frac{31 \cdot 5}{360} \times \pi \times 12 \cdot 8=3 \cdot 518 \ldots$
award 0/3

Question		Generic scheme	Illustrative scheme	Max m ark
15.	(a)	Ans: 51.5 metres - ${ }^{1}$ calculate height	- ${ }^{1} 51.5$	1
Notes: 1. Inappropriate use of RAD or GRAD should only be penalised once in either Q3, 10 or 15 (a) $18 \cdot 1 \ldots$ (RAD) (b) $53 \cdot 5 \ldots$ (GRAD)				
Commonly Observed Responses: 1. $51 \cdot 5,308 \cdot 5$ award 0/1				
	(b)	Ans: 17 metres - ${ }^{1}$ calculate minimum height	- ${ }^{1} 17$	1
Notes: 1. Inappropriate use of RAD or GRAD should only be penalised once in either Q3, 10 or 15 (a) $26 \cdot 2 \ldots$ (RAD) (b) 18.1... (GRAD)				
Commonly Observed Responses:				
	(c)	Ans: 24.1° and 335.9° -1 substitute 61 correctly into equation - ${ }^{2}$ calculate $\cos x$ - calculate value of x -4 calculate $2^{\text {nd }}$ value of x	-1 $61=40+23 \cos x$ $\bullet^{2} \quad \cos x=\frac{21}{23}$ - $24(.07 . .$. -4 335(.92...)	4

