2015 Mathematics

National 5 Paper 1

Finalised Marking Instructions

© Scottish Qualifications Authority 2015
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Marking Principles for National 5 Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.
(a) Marks for each candidate response must always be assigned in line with these General Marking Principles and the Detailed Marking Instructions for this assessment.
(b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
(c) If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader.
(d) Credit must be assigned in accordance with the specific assessment guidelines.
(e) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
(f) Working subsequent to an error must be followed through, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working is easier, candidates lose the opportunity to gain credit.
(g) Where transcription errors occur, candidates would normally lose the opportunity to gain a processing mark.
(h) Scored out or erased working which has not been replaced should be marked where still legible. However, if the scored out or erased working has been replaced, only the work which has not been scored out should be judged.
(i) Where a candidate has made multiple attempts, mark all attempts and award the lowest mark.
(j) Unless specifically mentioned in the specific assessment guidelines, do not penalise:

- Working subsequent to a correct answer
- Correct working in the wrong part of a question
- Legitimate variations in solutions
- Bad form
- Repeated error within a question

Detailed Marking Instructions for each question

Notes:

1. Correct answer without working award $1 / 3$
2. (a) For $11-2-6 x<39 \rightarrow 6 x<30 \rightarrow x<5$
(b) For $11-2+6 x<39 \rightarrow 6 x<30 \rightarrow x<5$
3. For $9(1+3 x)<39 \rightarrow 9+27 x<39 \rightarrow 27 x<30 \rightarrow x<\frac{30}{27}$
award 1/3 $\checkmark x x$
award 1/3 $\quad x \checkmark x$
award 1/3 $x \checkmark x$

Question		Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each \bullet
3.	Ans: 39° $\bullet \bullet^{1}$ calculate the size of angle OBD \bullet^{2} calculate the size of angle EDF		\bullet \bullet^{3} calculate the size of angle BDF	
\bullet^{2} angle OBD $=13^{\circ}$				

Notes:

1. The first two marks may be awarded for information marked on the diagram
2. An answer of 39° must be stated outwith the diagram for the third mark to be awarded
3. Third mark is only available where angle ODB = angle OBD
4. For an answer of 39° with no relevant working award $0 / 3$

	uestion	Expected Answer(s) Give one mark for each -	Max Mark	Illustrations of evidence for awarding a mark at each •
4.		Ans: $x^{3}-3 x^{2}-6 x+8$ - ${ }^{1}$ start to multiply out brackets - 2 complete multiplying out brackets - ${ }^{3}$ collect like terms which must include a term in x^{3}	3	- ${ }^{1}$ evidence of 3 correct terms eg $x^{3}+x^{2}-2 x$ - $^{2} x^{3}+x^{2}-2 x-4 x^{2}-4 x+8$ - ${ }^{3} x^{3}-3 x^{2}-6 x+8$
Notes: 1. Correct answer with no working award $3 / 3$				

	stion	Expected Answer(s) Give one mark for each -	Max Mark	Illustrations of evidence for awarding a mark at each •
5.		Ans: $a=8$ - ${ }^{1}$ find \bar{x} and $(x-\bar{x})^{2}$ -2 substitute into formula for a -3 calculate value of a	3	$\begin{aligned} & \bullet 3 \text { and } 4,1,1,1,25 \\ & \bullet \frac{32}{5-1} \\ & \bullet \quad 8 \end{aligned}$

Notes:

1. Where a candidate has worked out the standard deviation award marks as follows:
${ }^{1}$ find \bar{x} and $(x-\bar{x})^{2}$
-2 substitute into formula

- calculate standard deviation
- 3 and 4, 1, 1, 1, 25
e2 $\sqrt{\frac{32}{5-1}}$
- ${ }^{3} \sqrt{8}$

2. For use of alternative formula award marks as follows:
${ }^{1}$ find $\sum x$ and $\sum x^{2}$
-1 15 and 77
${ }^{2}$ substitute into formula for a
$\bullet^{2} \frac{77-\frac{15^{2}}{5}}{5-1}$
\bullet^{3} calculate value of a

- ${ }^{3} 8$

3. For a final answer of $a=\sqrt{8}$ award $2 / 3$
4. Disregard any attempt to simplify $\sqrt{8}$
5. Correct answer without working award $0 / 3$

Question Expected Answer(s) Give one mark for each • Max Mark Illustrations of evidence for awarding a mark at each 6. Ans: $\boldsymbol{a}=\mathbf{4}, \boldsymbol{b}=\mathbf{3}$ \bullet •1 state the value of a
Notes:
1. For an answer of $y=4 \sin 3 x$ 2. For an answer $a=3, b=4$ or $y=3 \sin 4 x$

Notes:

1. Correct answer without working award $3 / 3$
2. For a final answer of $y=\frac{2}{1} x+9$ award $2 / 3 \checkmark \checkmark x$

Notes:

1. Where 2 out of the 3 values are in the correct position relative to each other, with valid reason award $1 / 2$
e.g. For " $\cos 90^{\circ}$ is positive, $\cos 100^{\circ}$ is negative, $\cos 300^{\circ}$ is positive;

$$
\text { so } \cos 100^{\circ}, \cos 300^{\circ}, \cos 90^{\circ} " \text { award } 1 / 2
$$

2. Accept positions of $\cos 90^{\circ}, \cos 100^{\circ}$ and $\cos 300^{\circ}$ indicated on a cosine curve for award of the second mark

Notes:

1. An incorrect answer for the median must be followed through with the possibility of awarding marks 2 and 3
2. If 'correct' SIQR is found from an
(a) ordered list with one missing or one extra number
(b) unordered list
award 2/3 $\times \checkmark \checkmark$
award 1/3 $\times \times \checkmark$

| (b) | Ans: valid comments
 $\bullet 1^{1}$ compare medians
 $\bullet \mathbf{2}^{2}$ compare semi-interquartile
 ranges | $\mathbf{2}$ | \bullet •1 On average the second round's
 scores are higher |
| :--- | :--- | :--- | :--- | :--- |
| $\bullet \bullet^{2}$ The second round's scores are | | | |
| more consistent. | | | |

Notes:

1. Answers must be consistent with answer to part (a)
2. Statements must show understanding of the concepts
e.g. (a) "In general the second round's scores were higher" is acceptable but "The median of the second round was higher" or "The second round's scores were higher" are not acceptable.
(b) "The spread of scores in the second round was lower" is acceptable but "the range of scores in the second round was lower" is not acceptable.

Notes:

1. For a solution obtained by guess and check award $0 / 3$

Notes:

1. Correct answer without working award $3 / 3$
2. For subsequent incorrect working, the final mark is not available

[END OF MARKING INSTRUCTIONS]

2015 Mathematics

National 5 Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2015
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Marking Principles for National 5 Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.
(a) Marks for each candidate response must always be assigned in line with these General Marking Principles and the Detailed Marking Instructions for this assessment.
(b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
(c) If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader.
(d) Credit must be assigned in accordance with the specific assessment guidelines.
(e) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
(f) Working subsequent to an error must be followed through, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working is easier, candidates lose the opportunity to gain credit.
(g) Where transcription errors occur, candidates would normally lose the opportunity to gain a processing mark.
(h) Scored out or erased working which has not been replaced should be marked where still legible. However, if the scored out or erased working has been replaced, only the work which has not been scored out should be judged.
(i) Where a candidate has made multiple attempts, mark all attempts and award the lowest mark.
(j) Unless specifically mentioned in the specific assessment guidelines, do not penalise:

- Working subsequent to a correct answer
- Correct working in the wrong part of a question
- Legitimate variations in solutions
- Bad form
- Repeated error within a question

Detailed Marking Instructions for each question

Notes:

1. For an answer of 253628 without working
award 3/3
2. Where an incorrect percentage is used, the working must be followed through to give the possibility of awarding $2 / 3$
e.g. for an answer of 393216 ($240000 \times 1 \cdot 28^{2}$), with working
3. For an answer of $246720(240000 \times 1 \cdot 028)$, no working necessary
4. For an answer of $493440(240000 \times 1.028 \times 2)$, with working
5. For an answer of $253440(240000+240000 \times 0.028 \times 2)$, with working award $1 / 3$
6. For an answer of $13440(240000 \times 0.028 \times 2)$

Notes:

1. Correct answer without working
2. Accept $x=7$
3. For an answer of $3 \times 23+2=71$
award 2/2
award 2/2
award 0/2

	tion	Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
3.		Ans: 0.78 km - ${ }^{1}$ correct substitution into cosine rule -2 evaluate $A B^{2}$ -3 calculate $A B$	3	$\left\lvert\, \begin{array}{ll} \bullet & 1 \cdot 35^{2}+1 \cdot 2^{2}-2 \times 1.35 \times \\ & 1.2 \times \cos 35^{\circ} \\ \bullet & 0.608 \ldots . . \\ \bullet \bullet^{3} & 0.78 \end{array}\right.$

Notes:

1. For 0.8 with valid working
award 3/3
2. Disregard errors due to premature rounding provided there is evidence
e.g. $1 \cdot 35^{2}+1.2^{2}-2 \times 1.35 \times 1.2 \times 0.8=0.6705 \Rightarrow$ final answer $=0.82$ award $3 / 3$
3. Correct answer without working award $0 / 3$
4. For 2.49 (uses RAD) or 0.71 (uses GRAD), with working award 3/3

Notes:

1. Correct answer without working award $2 / 2$
2. For $13 \cdot 8$......(e.g. $\sqrt{6^{2}-13^{2}+18^{2}}$), no working necessary, award $1 / 2$

Notes:

1. Alternative method:

- ${ }^{1}$ correct nose to tail diagram (must include arrows)
$\bullet{ }^{2}$ state components of vector $\mathbf{p}+\mathbf{q}$

2. Correct answer without working award 2/2
3. Special cases (working must be shown)
(a) $\binom{5}{-3}+\binom{-4}{5}=\binom{1}{2} \quad$ award $1 / 2 \times \checkmark$
(b) $\binom{3}{-5}+\binom{-5}{4}=\binom{-2}{-1}$ award $1 / 2 \times \checkmark$
4. For (-1,-2) award 1/2

	tion	Expected Answer(s) Give one mark for each -	Max Mark	Illustrations of evidence for awarding a mark at each •
6.	(a)	Ans: $1.1 \times 10^{12} \mathrm{~km}^{3}$ - ${ }^{1}$ substitute radius into volume of a sphere formula - ${ }^{2}$ evaluate volume - ${ }^{3}$ round volume to 2 significant figures	3	$\begin{aligned} & -1 \mathrm{~V}=\frac{4}{3} \times \pi \times(6400)^{3} \\ & \bullet^{2} 1 \cdot 098 \ldots \times 10^{12} \\ & \bullet^{3} 1 \cdot 1 \times 10^{12} \end{aligned}$

Notes:

1. Accept variations in π
2. Some answers (without working)
(a) 1.1×10^{12}
award 3/3
(b) 1.10×10^{12}
(2 d.p.) award 2/3 $\checkmark \checkmark x$
(c) 1.0×10^{12} award 0/3
3. Some answers (working must be shown)
(a) $\frac{4}{3} \times \pi \times(6400)^{2}=1.71 \ldots . . \times 10^{8}=1.7 \times 10^{8} \quad$ award $2 / 3 \quad \times \checkmark \checkmark$
(b) $\frac{4}{3} \times \pi \times 6400=2 \cdot 68 \ldots . . \times 10^{4}=2 \cdot 7 \times 10^{4} \quad$ award $1 / 3 \quad \times \times \checkmark$

Notes:

1. Correct answer without working award $2 / 2$
2. $\frac{1 \cdot 098 \ldots . \times 10^{12}}{2 \cdot 2 \times 10^{10}}=49 \cdot 9 \ldots ., 50$ or 49 award $2 / 2$

Notes:

1. Correct answer without working award $3 / 3$
2. For $\frac{10 s}{1}$ award $2 / 3 \checkmark \checkmark x$

Notes:

1. For 350 with or without working
award 3/3
2. For $252 \cdot 88(85 \%$ of $297 \cdot 50)$ or $342 \cdot 13(115 \%$ of $297 \cdot 50)$
(i) and evidence of $85 \%=297 \cdot 50$
award 1/3 $\quad \checkmark \times x$
(ii) otherwise
award 0/3
3. For $115 \%=297.50 \rightarrow 258 \cdot 70$
award 2/3 $\times \checkmark \checkmark$
4. For subsequent incorrect working, the final mark is not available
e.g. $350+297 \cdot 50=647 \cdot 50$
award 2/3 $\checkmark \checkmark x$

Notes:

1. (a) $\frac{30}{24} \times 400=500$ award 1/4 $\checkmark \times x \times$
(b) $\frac{30}{24} \times 400-400=100 \quad$ award $2 / 4 \checkmark \times \times \checkmark$
(c) $\left(\frac{30}{24}\right)^{3} \times 400-400=381 \times 25 \quad$ award $3 / 4 \quad \checkmark \times \checkmark \checkmark$
2. Where premature rounding leads to an inaccurate answer the third mark is not available e.g. $\frac{30}{24}=1.25 \Rightarrow 1.3^{2} \times 400=676 \rightarrow 276$ award $3 / 4 \checkmark \checkmark \times \checkmark$
3. The fourth mark is not available where area of triangle PRS is less than 400
e.g. $\left(\frac{24}{30}\right)^{2} \times 400=256 \quad$ award $2 / 4 \times \checkmark \checkmark \times$
4. Where candidate assumes that triangles are right-angled the maximum available mark is $3 / 4 \times \checkmark \checkmark \checkmark$ (but see note 2 above)

$$
\begin{aligned}
& \bullet^{2} Q R=\frac{400}{1 / 2 \times 24}=331 / 3 \rightarrow P R=\frac{30}{24} \times 331 / 3=412 / 3 \\
& \bullet^{3} \text { area of } P R S=1 / 2 \times 412 / 3 \times 30=625 \\
& \bullet^{4} \text { area of } P Q T S=225
\end{aligned}
$$

5. Correct answer without working award 3/4

Que	tion	Expected Answer(s) Give one mark for each -	Max Mark	Illustrations of evidence for awarding a mark at each -
10.		Ans: 25 cm - ${ }^{1}$ correct fraction of circle - ${ }^{2}$ construct equation - ${ }^{3}$ know how to solve equation - ${ }^{4}$ solve equation and calculate length of the pendulum	4	$\begin{aligned} & \cdot \frac{65}{360} \\ & \cdot{ }^{2} \text { e.g. } \frac{65}{360} \times \pi \times d=28.4 \\ & \cdot{ }^{3} \text { e.g. } d=\frac{28.4}{\frac{65}{360} \times \pi} \\ & \cdot{ }^{4} 25 \end{aligned}$

Notes:

1. Accept variations in π.
2. Accept 0.57 as evidence of $\frac{65}{360} \times \pi$ in awarding 2 nd and 3 rd marks
3. Disregard errors due to premature rounding provided there is evidence.
e.g. $d=\frac{28.4}{0.57}=49 \cdot 8 \rightarrow 24.9 \quad$ award $4 / 4$
4. $\frac{65}{360} \times \pi \times r^{2}=28 \cdot 4 \rightarrow 7 \cdot 07 \ldots ., 7 \cdot 1$ or $7 \quad$ award $3 / 4 \checkmark \times \checkmark \checkmark$
5. For the award of the $4^{\text {th }}$ mark, the calculation must include $28 \cdot 4$, a fraction (e.g. $\frac{65}{360}$ or $0 \cdot 18 \ldots$) and a division by π
6. Correct answer without working award $0 / 4$

Notes:

1. Correct units must be given in the final answer for the award of the $4^{\text {th }}$ mark.
2. Disregard errors due to premature rounding provided there is evidence.
e.g. $\sin 60=0.87 \Rightarrow\left(\frac{1}{2} \times 20 \times 20 \times 0.87\right) \times 6=1044 \mathrm{~cm}^{2} \quad$ award 4/4
3. Some common answers:
(a) $\left(\frac{1}{2} \times 40 \times 40 \times \sin 60\right) \times 6=4156 \cdot 9 \mathrm{~cm}^{2} \quad$ award $3 / 4 \quad \checkmark \times \checkmark \checkmark$
(b) $\frac{1}{2} \times 40 \times 40 \times \sin 60=692.8 \mathrm{~cm}^{2} \quad$ award $1 / 4 \quad \checkmark \times \times x$
(c) $\left(\frac{1}{2} \times 20 \times 20\right) \times 6=1200 \mathrm{~cm}^{2} \quad$ award $1 / 4 \quad \times \times \sqrt{ } \times$
4. Use of GRAD or RAD (working must be shown)
(a) For $970 \cdot 8 \mathrm{~cm}^{2}$ [uses GRAD]
award 4/4
(b) For $-365 \cdot 8 \mathrm{~cm}^{2}$ or $365 \cdot 8 \mathrm{~cm}^{2}$ [uses RAD]
award 3/4
5. Correct answer without working award 4/4
6. Alternative strategy (using $1 / 2 b h$ to find area of triangle).

Award the marks as follows:

- ${ }^{1}$ correct length of side of hexagon •1 20
- 2 correct substitution into area of triangle formula
- ${ }^{3}$ know how to find area of hexagon
- ${ }^{4}$ correct calculation and correct units
- $\frac{1}{2} \times 20 \times \sqrt{20^{2}-10^{2}}$
- ${ }^{3}\left(\frac{1}{2} \times 20 \times \sqrt{20^{2}-10^{2}}\right) \times 6$
- ${ }^{4} 1039 \cdot 2$ cm 2

Notes:

1. $x=0.8$ and depth $=2$ are acceptable in awarding the third and fourth marks
2. The final mark is for adding 1.2 to a value which has been calculated
3. In the absence of a diagram accept $x^{2}=1 \cdot 2^{2}-0 \cdot 9^{2}$ as evidence for the award of the first 2 marks
4. For $x^{2}=1 \cdot 2^{2}+0 \cdot 9^{2} \rightarrow x=1 \cdot 5 \rightarrow$ depth $=2 \cdot 7$
(a) with correct diagram
award 3/4
(b) without diagram
award 2/4 $\times \times \checkmark \checkmark$
5. Where a candidate assumes angle $M L O=$ angle $O M L=45^{\circ}$, only the 1 st and 4 th marks are available
6. For an answer of 1.99 without working award 0/4

Question		Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
13.		Ans: 23.8 kilometres - ${ }^{1}$ calculate the size of angle PQR -2 correct substitution into sine rule -3 know how to solve equation - ${ }^{4}$ calculate PR correctly	4	$\begin{aligned} & \bullet 52 \\ & \bullet \frac{q}{\sin 52}=\frac{25}{\sin 56} \\ & \cdot \frac{25 \sin 52}{\sin 56} \\ & \cdot 423 \cdot 8 \end{aligned}$

Notes:

1. Disregard errors due to premature rounding provided there is evidence
2. Where incorrect sizes are used for angles, marks 3 and 4 are still available for rearranging and processing a sine rule calculation
e.g. $\frac{25}{\sin 160}=\frac{q}{\sin 128} \rightarrow q=57 \cdot 6$ award 2/4 $\times \times \checkmark \checkmark$
3. For a correct answer without working
award 0/4
4. For $\frac{q}{52}=\frac{25}{56} \rightarrow q=23 \cdot 2 \ldots \ldots$.
award $1 / 4 \checkmark \times \times x$
5. Use of GRAD or RAD (working must be shown)
(a) For $23 \cdot 7$ [uses GRAD]
award 4/4
(b) For $-47 \cdot 3$ or $47 \cdot 3$ [uses RAD]
award 3/4

Que	tion		Expected Answer(s) Give one mark for each -	Max Mark	Illustrations of evidence for awarding a mark at each •
14.	(a)	(i)	Ans: $2 x+13$ - ${ }^{1}$ correct expression	1	-1 $2 x+13$
		(ii)	Ans: $\begin{aligned} & 4 x^{2}+44 x+117=270 \\ & \Rightarrow 4 x^{2}+44 x-153=0 \end{aligned}$ ${ }^{1}{ }^{1}$ find expression for area of card and expand pair of brackets - ${ }^{2}$ construct equation and rearrange into required form	2	$\begin{aligned} & \cdot 1(2 x+13)(2 x+9)=4 x^{2}+44 x+117 \\ & \cdot{ }^{2} 4 x^{2}+44 x+117=270 \\ & \Rightarrow 4 x^{2}+44 x-153=0 \end{aligned}$

Notes:

1. If solution to (a)(ii) appears in (b) then both marks are available

(b)	Ans: $x=2.8 \mathrm{~cm}$ - ${ }^{1}$ correct substitution into quadratic formula - ${ }^{2}$ evaluate discriminant - ${ }^{3}$ solve for x $\cdot{ }^{4}$ select positive value of x, correctly stated to 1 decimal place	4	$\begin{aligned} & \cdot 1 \quad x=\frac{-44 \pm \sqrt{44^{2}-4 \times 4 \times(-153)}}{2 \times 4} \\ & \bullet^{2} x=\frac{-44 \pm \sqrt{4384}}{2 \times 4} \end{aligned}$ (stated or implied by \bullet^{3}) $\bullet^{3} x=2 \cdot 77 \ldots$ and $-13 \cdot 77 \ldots$. - ${ }^{4} x=2 \cdot 8$

Notes:

1. If solution to (b) appears in a(ii) then all four marks are available.

However, if a different value for x is stated in (b) then the fourth mark is not available. (General Marking Principle (i) should not be applied in this special case.)
2. Where $b^{2}-4 a c$ is calculated incorrectly, the third and fourth marks are only available if $b^{2}-4 a c>0$.
3. Where a, b and c are all positive the second mark is not available.
4. Correct answer without working award 0/4

